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I. METHODS

Wormhole construction

The magnetic hose at the core of the wormhole was made of a mu-metal foil 0.2mm thick, folded into a spiral.
A cardboard sheet was used to separate the different turns of the spiral. The final hose had a length of 87mm,
an exterior diameter of 12mm and had 8 turns of ferromagnetic foil (see Fig. 1B).

The spherical cloaking shell was composed of an inner superconducting (SC) shell surrounded by an external
ferromagnetic (FM) metasurface. The superconducting shell was made of several pieces of type-II SC strip
12mm width (SuperPower SF12050) wrapped around a plastic former 3D-printed in PLA thermoplastic (Fig.
S1d). The former had an external diameter of 79mm and had 8 openings to allow the free circulation of liquid
nitrogen. It also had two traversing holes of radius 8mm. On the external surface of this former 8 pieces of SC
strip were glued following the meridian lines from one traversing hole to the other, keeping the same spacing
between the strips. Then, 8 shorter pieces of strip were placed between the previous ones, partially covering
the space between them. These pieces were fixed on top of the previous using small welding points. Finally,
16 shorter pieces of strip were placed to cover the remaining gaps, and were fixed using small welding points.
Some pieces of adhesive tape where put to reinforce the fixing points near the two traversing holes (see Fig.1B
and Fig. S1a).

The external FM shell was made of several pieces of mu-metal foil 0.2mm thick. The distribution and size of
the pieces was optimized as explained in Section III of the Supplementary Information. A plastic support with
the optimized shape was specially designed and 3D-printed in PLA thermoplastic (see Fig. S1e), containing
the lodgings for the pieces. We used 155 pieces with 6 different shapes, which where glued in the corresponding
lodgings (placing them at a radial distance of 43mm to the center, see Fig. S1b). Finally, some pieces of
adhesive tape were put covering all the FM pieces.

A virtual image of the complete wormhole is shown in Fig. S1f, where the cut allows to see the different
parts, including the plastic supports. A real picture of the wormhole is shown in Fig. S1c.

Experimental setup

The applied field was created by a pair of Helmholtz coils with a radius of 150mm separated a distance of
150mm. The wormhole was placed approximately at its center, inside a vessel made of polystyrene foam. A
lower support for the wormhole was designed and 3D-printed in PLA, keeping it fixed and aligned (see gray lower
part and red centering bars in Fig. S1c). This support also hold the small coil that created the transmitted
field. This coil had and approximate radius of 5mm and length of 10mm, it was aligned with the hose and
placed leaving a gap of 2mm between the coil and the wormhole’s end.

Measurements where done using two different Hall probes. Probe C measured the distortion created by the
device (as a function of the x position) and for different distances from the surface of the device (see Fig. 2B).
Probe T measured the field transmitted through the device as a function of the distance from the device’s end
d (d = x− xsurf , being xsurf the position of device’s end).

Measurements

Measurements of the FM shell were performed placing only the FM shell and measuring the field distortion
with probe C at room temperature. We also measured the field with probe C when no device and no field was
applied (measuring the earth’s magnetic field and other ambient fields). These field values were subtracted to
obtain the final measurements.

Measurements of the SC shell were performed placing the SC shell and the hose inside and submerging it
into liquid nitrogen. Probes were also submerged. Before any field was applied, we measured the field at the
exit of the device. Then, the Helmholtz field was applied and the field distortion was measured with probe C.
Also the field at the exit was measured. After this the small coil was also fed, and the distortion was measured
again with probe C and the transmission with probe T. This same procedure was repeated applying the field
of a single coil (deactivating one of the Helmholtz coils). We also measured the field with probes C and T
submerged in liquid nitrogen when no device and no field was applied. These fields values were subtracted to
obtain the final measurements.

Measurements of the complete wormhole were performed placing the SC and the FM shells and the inner
hose, and submerging the whole device and the two probes in liquid nitrogen. We followed the same previous
measurement procedure.

Numerical calculations
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3D simulations where obtained by the AC/DC module of Comsol Multiphysics software.

a b c

d e f

Figure S1: The inner SC spherical shell, a, was made of several pieces of type-II SC strip fixed on a plastic former, d. The
exterior FM metasurface, b, was made by fixing 155 pieces of mu-metal on a specially designed plastic former containing
the lodgings for the pieces, e. Both formers where designed and 3D-printed in PLA thermoplastic. The wormhole, c,
contained an inner hose traversing the two shells, as can be seen in the cross-section view, f.
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II. ANALYTICAL SOLUTION OF A SPHERICAL HOMOGENEOUS BILAYER IN THE
PRESENCE OF AN EXTERNAL DIPOLAR FIELD

A. The problem and the general solution

Consider a spherical bilayer formed of an interior shell of magnetic material with permeability µ1 and inner
radius R1 and outer one R2. This inner layer is wrapped with a second exterior shell with inner radius R2 and
outer one R3 of magnetic material with permeability µ2 (both permeabilities are considered homogeneous and
isotropic). The interior hole and the exterior region are magnetically empty (µ0). We use standard spherical
coordinates (r, θ, φ) centered in the center of the bilayer. When needed, standard cartesian (x, y, z) coordinates
will also be used. Hats over the coordinate letter will mean unitary vectors in the corresponding direction (see
Fig. S2).

Figure S2: Sketch of the considered bilayer.

Consider an external magnetic dipole located at −dẑ with magnetic moment m = mẑ. The dipole is external
to the bilayer, thus d > R3. Since there are no free currents, we can define a magnetic scalar potential f(r, θ, φ)
such that H = −∇f and B = µH, being µ the corresponding permeability, depending on the region we are
considering: H (for ’hole’) r < R1, I (for ’interior shell’) R1 < ρ < R2, E (for ’exterior shell’) R2 < ρ < R3,
and O (for ’outside’) R3 < ρ. The Laplace equation for the scalar potential holds in all the regions of space. Its
general solution at the different regions can be written as

fH =

∞∑
n=0

Anr
nPn(cos θ), (S1)

fI =

∞∑
n=0

(
Bnr

n +
Cn
rn+1

)
Pn(cos θ), (S2)

fE =

∞∑
n=0

(
Enr

n +
Fn
rn+1

)
Pn(cos θ), (S3)

fO = fdip +

∞∑
n=0

Dn

rn+1
Pn(cos θ), (S4)

where we have already used that the scalar potential should be finite at the origin and should tend to the fdip
at infinite. An, Bn, Cn, En, Fn, and Dn are constants to be determined by the boundary conditions, Pn() are
the Legendre polynomials of integer order n (n ≥ 0), and fdip is the scalar potential of the dipole that can be
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expressed as

fdip =
m

4π

d+ r cos θ

(d2 + r2 + 2dr cos θ)3/2
, , (S5)

or expressed as an expansion of Legendre polynomials as

fdip =

{
m
4π

∑∞
n=0(−1)n n+1

d2

(
r
d

)n
Pn(cos θ) if r < d,

m
4π

∑∞
n=0(−1)n+1 n

d2

(
d
r

)n+1
Pn(cos θ) if r > d.

(S6)

Note that the scalar potential of a dipole not centered at the origin of coordinates, fdip, contains several
(actually infinite) terms in the Legendre expansion, with respect to the origin of coordinates.

The standard boundary conditions (continuity of radial component of B and continuity of tangential compo-
nent of H) yield in a set of equations for the constants An, Bn, Cn, En, Fn, and Dn. Because of the orthogonality
of the Legendre polynomials and of their derivatives (with cosine argument) with respect to the angle (associ-
ated Legendre polynomials) the set of equations can be split in a system of equations for each n. So, for each
n, we find a set of six linear algebraic equations for the An, Bn, Cn, En, Fn, and Dn unknowns. The general
solutions of these sets are cumbersome, although straightforward. The terms n = 0 are A0 = B0 = E0 = m

4πd2 ,
and C0 = F0 = D0 = 0, indicating that the term n = 0 is a constant that could be removed from the scalar
potential terms.

We are here most interested in the distortion of the field outside the bilayer. As can be easily seen from
Eq.(S4) this distortion is controlled by the constants Dn. Actually, the ’distortion term’

∑∞
n=0

Dn

rn+1Pn(cos θ)
is a multipolar expansion n = 1 being the dipolar term, n = 2 the quadrupolar one, and so on. As already
mentioned, the constant D0 = 0. We define α = R1/R2 and β = R3/R2 (note that R2 will be used as a
normalization distance, α < 1 and β > 1) for the following discussions.

B. Multipolar terms in the distortion

From the general expression for Dn, we see that for each n, Dn can be canceled. Thus, for a given n, Dn = 0
if

β =

(
(n(µ0 + µ2) + µ2)

(
α2n+1(µ1 − µ0)(nµ1 + nµ2 + µ1) + (µ1 − µ2)(−n(µ0 + µ1)− µ1)

)
(µ2 − µ0) (n(n+ 1)α2n+1(µ0 − µ1)(µ1 − µ2) + (n(µ0 + µ1) + µ1)(n(µ1 + µ2) + µ2))

) 1
2n+1

. (S7)

So, the different terms of the expansion can be separately canceled by conveniently choosing the relation of
radius. Note that this relation also depends on the α ratio. In the case α = 0 we find

β =

(
(µ1 − µ2)(n(µ0 + µ2) + µ2)

(µ0 − µ2)(n(µ1 + µ2) + µ2)

) 1
2n+1

. (S8)

This last expression has also been found considering the problem of cancellation of the scattering terms when a
plane wave of wavelength λ is applied over small (R3 � λ) spherical layered shells [1, 2]. In this case, because
the scatterer is very small as compared with the wavelength, the n = 1 term dominates the scattering and

the solution reduces to 3

√
(µ0+2µ2)(µ1−µ2)
(µ0−µ2)(µ1+2µ2)

(also found in Ref. [3]). This limit would correspond to the case in

which the scatterer feels a basically uniform field and radiative terms are not important. In our present case
the applied field is not uniform, although static. In consequence, our solution is not based on the small-size
approximation, but exact. In general however, not only the dipolar (n = 1) term should be considered, but the
next multipolar terms can be important.

C. External field distortion when the bilayer has an interior superconducting shell

We now focus on a particular case. Consider here that the interior shell is an ideal superconductor and, thus,
consider µ1 = 0. Actually, µ1 = 0 yields An = 0 (for n > 0) indicating that no magnetic field is present inside
the hole due to the shielding effect of the superconducting layer.
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From the general solution and setting µ1 = 0 we find that

Dn =
m

4π

(−1)nnR1+2n
3 [(1 + n)R1+2n

3 (µ0 − µ2) +R1+2n
2 (µ2 + n(µ0 + µ2))]

dn+2[nR1+2n
2 (µ0 − µ2) +R1+2n

3 (µ0 + n(µ0 + µ2))]
. (S9)

As said, there is no way of canceling Dn for all n at the same time, given the geometry (radius) and magnetic
properties (permeabilities). However, we can cancel a particular term in the multipolar expansion of the
distortion.

Indeed, we can set Dn = 0 (for n > 0) and find

µ2 =
(2n+ 1)µ0

(n+ 1) (β2n+1 − 1)
+ µ0 ⇐⇒ β =

(
(2n+ 1)µ0

(n+ 1)(µ2 − µ0)
+ 1

) 1
2n+1

. (S10)

Note that now the results does not depend on α. This means that for each n (for each multipolar term) and
given the ratio β there is a given µ2 that cloaks that n-term. Or, in other words, for each n and a particular µ2

and R2 there is a R3 that yields cloaking of that n term. There is no way to cancel all the terms at the same
time.

The case n = 1 is of particular interest. In this case we have

µ2 = µ0
2R3

3 +R3
2

2(R3
3 −R3

2)
, (S11)

which is exactly the same relation needed for cloaking a uniform external field (Supporting Material of Ref.
[4]). In other words, for a given β, the same µ2 that allows to cloak a uniform external field also cancels the
first dipolar term of the distortion term when the bilayer is in the presence of the non-homogeneous field of the
external dipole.

What about the other terms in this case? If we fix µ2 for canceling the n = 1 term [Eq.(S10)], we get

Dn(β) =
m

4πd2

(
R2

d

)n
Rn+1

2

(−1)n+1nβ2n+1
(
3(n+ 1)β2n+1 − 4nβ3 + n− 2β3 − 1

)
(β2n+1 (2(2n+ 1)β3 − n− 2)− 3n)

. (S12)

In particular, when the exterior shell [of permeability µ2 given by Eq. (S11)] is very thin, that is β → 1, the
constants Dn reduce to

Dn(1) ' m

4πd2

(
R2

d

)n
Rn+1

2

(−1)n+1(n− 1)n

4π(n+ 2)
. (S13)

Comparing Eqs. (S12) and (S13), we see that Dn(β) ≥ Dn(1) (equality only when β = 1). That is, the
thinner the exterior shell, the lower the value of each n-term.
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III. OPTIMIZATION OF THE EXTERNAL METASURFACE

In the previous section we showed that a spherical FM shell surrounding an interior SC shell whose perme-
ability fulfills Eq. (1) of the main text exactly cloaks a uniform applied field. However materials with a fine
tuned intermediate relative permeability values (e.g. between 5 and 20) are difficult to find. For this reason we
design an external metasurface consisting of several pieces of thin high-permeability FM foil (e.g. mu-metal)
and we study the response given by different configurations as a function of the size and distribution of the
pieces.

a b c d

e f

z
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g
B /Bz a

k

Figure S3: a-f Simulation results considering different metasurface designs surrounding an ideal superconducting shell
with two traversing holes. Upper parts of the figures show plots of the field Bz/Ba along the median plane of the
3D calculations. Lower parts show distortion lines for each case, calculated as the points in the median plane where
(Bz − Ba)/Ba = k; the better cloaking achieved, the closer the lines are to the surface. Panel f shows the final design,
whose 3D view is shown in g.

In Fig. S3 we show plots of the median plane of 3D-numerical simulations considering different metasurface
designs (a-f). In all the cases we consider an inner superconducting shell (µSC/µ0 = 10−5) having two holes
aligned with the x-axis (where the hose is going to be placed) and different configurations of ideal FM plates
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(µFM/µ0 = 105) with a thickness of 0.3mm. A uniform field perpendicular to the cylindrical hole’s axis is

applied ~Ba = Baûz. Upper parts of the figures show plots of Bz/Ba. Lower parts of the figures include different
distortion lines, explicitly showing the distortion reduction along the optimization process. The final design is
shown in Fig. S3f and g, and consists of 155 FM pieces with 6 different shapes placed at a radial distance of
43mm to the center.

Our proposal is not strictly omni-directional because the plates distribution has a preferred direction (given
by the direction of the holes for the hose), but a similar optimization process could be done assuming isotropic
distributions of plates wrapping the sphere (following a spherical polyhedron, for example).
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IV. NUMERICAL CALCULATIONS OF THE DESIGNED WORMHOLE

The complete wormhole is simulated using full 3D finite-element calculations obtained by the AC/DC module
of the Comsol Multiphysics software. In the calculations we assume the exterior FM part is a metasurface made
of FM plates following the optimum design found in Section III of the Supplementary Information and the
interior shell is an ideal SC shell with two holes (in which the hose is introduced). The hose is assumed to be a
FM cylinder. A uniform field in the z direction Ba is applied.

The SC shell has inner and outer radii of 40 and 41mm, respectively and the traversing holes a radius of
8mm (the relative permeability of the SC is µSC = 10−3). The FM pieces have a thickness of 0.3mm and are
placed around a virtual sphere of 43mm of radius (their relative permeability is µFM = 103). The interior hose
is simulated as cylinder of 12mm of diameter and a length of 86mm made of ideal FM material (µFM = 103).
The coil creating the dipolar field is simulated as a cylinder of a radius 5mm and length 10mm with a uniform
magnetization in the x direction (the magnetization is adjusted to create the same field as the real coil in
isolated conditions). The cylinder is aligned with the hose and there is a gap of 2mm of free space between the
hose and the cylinder’s face.

a b

B /Bz a

B
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x (mm)

z

x

Figure S4: a Result of the numerical calculation, showing the line at which the field is plotted (dashed green). b Plots
of the z-field component calculated in different situations; light green when only a uniform field is applied and blue when
both the uniform and the field of the coil are applied (dark red and green are the calculated fields when only the FM
exterior shell and only the inner SC shell are present, respectively, and applying only the uniform field).

From these calculations (Fig. S4) two interesting effects can be seen when the wormhole is complete. When
only the uniform field is applied the distortion caused by the device is very small (light green line) and symmetric.
When the small coil is turned on (blue line) the distortion slightly increases; at positions near the coil (negative
x) the Bz field is decreased whilst it slightly increases at positions close to the wormhole’s end. These effects
are also found in the experimental measurements and can be explained by taking into account that the field
lines that are transferred through the wormhole return from the wormhole’s end to the coil. This field increases
the z-component of the total field near the wormhole’s end and decreases it near the coil, as field lines close at
the coil.



10

V. TRANSMISSION FIELD MEASUREMENTS

The field at the end of the wormhole was measured in different situations as a function of the distance to the
device’s end. Before any field was applied, we measured the field at the end (dark yellow points in Fig. S5a);
the measured field was produced by the remanent magnetization of the ferromagnetic parts. Then, the uniform
field of the Helmholtz coils was applied and the field at the end was measured again (green points). Ideally,
measurements should not change since the applied field is perpendicular to the component measured by the
probe T, nevertheless we observed a constant increase respect to the first measurements. This shows a small
component of the applied field was also measured by the probe, probably due to an imperfect alignment of the
probe T respect to the coils. Finally the small coil was also fed and a clear transmitted field was measured
(blue points).

From these measurements the field transmitted by the wormhole when a field is introduced at one of its ends
can be calculated by subtracting the measurements when the small coil and the uniform field is applied less the
measurements when only the uniform field is applied [5]. This transmitted field, BT, corrects for the effect of
the existing remanent magnetization and, therefore, only accounts for the field that is transferred from the coil
to the wormhole’s exit.

a

B
(m

T
)
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T
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B
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T
)

T
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Figure S5: a Field measurements at the wormhole’s end before any field was applied (dark-yellow points), when the
uniform field was applied (green points) and when the uniform field and the field of the small coil was applied (blue
points). b The transmitted field, BT, was calculated by subtracting the values on the green line from those on the blue
line in a.
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VI. MEASUREMENTS OF FIELD DISTORTION AT DIFFERENT DISTANCES FROM THE
WORMHOLE

The distortion of the uniform applied field was measured at different distances from the surface of the
wormhole. In Fig. S6 we show the field measurements at 2, 5, 10 and 15mm from the surface of the device
(see dashed green lines in Fig. 2B of the main text), measured with probe C. A clear systematic behavior is
observed, decreasing the field distortions as we move far from the device. However notice the distortion caused
by only the external FM part (dark-red lines) and only the SC shell (dark-green or dark-blue lines) are clearly
measured even at a distance of 15mm from the device. At this distance, the distortion caused by the complete
wormhole is effectively zero.
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Figure S6: Field distortion measurements performed at 2, 5, 10 and 15mm from the surface (a, b, c and d, respectively).
Black solid lines are measurements of the field created by the bare Helmholtz coils, dark-red lines are measurements
of the wormhole when the field is applied at room temperature (i.e. the SCs are deactivated), dark-green lines are
measurements performed at liquid nitrogen temperature when only the SC shell is present and the field of the Helmholtz
coils is applied and dark-blue lines are measurements when also the field of the small coil is applied. Green points are
measurements of the complete wormhole when only the uniform field is applied and blue points are measurements when
also the field of the small coil is applied.

These plots show that when the small coil is fed the total field BC
z tends to decrease at points close to the

coil (x < 0) and to increase at points near to the wormhole’s exit (x > 0). This effect is also observed in the
numerical calculations, and is explained by the field lines transmitted through the wormhole that come out at
the end and return to the coil. The contribution of these lines increase the total field Bz near the wormhole’s
end and decrease the total field near the coil.
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